Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper presents a counseling (ro)bot called Visual Counseling Agent (VICA) which focuses on remote mental healthcare. It is an agent system leveraging artificial intelligence (AI) to aid mentally distressed persons through speech conversation. The system terminals are connected to servers by the Internet exploiting Cloud-nativeness, so that anyone who has any type of terminal can use it from anywhere. Despite a promising voice communication interface, VICA shows limitations in conversation continuity on conventional 4G networks. Concretely, the use of the current 4G networks produces word dropping, delayed response, and the occasional connection failure. The objective of this paper is to mitigate these issues by leveraging a 5G/6G slice inclusive of mobile/multiple edge computing (MEC). First, we propose and partly implement the enhanced and advanced version of VICA. Servers of enhanced versions collaborate to increase speech recognition reliability. Although it significantly increases generated data volume, the advanced version enables a recognition of the facial expressions to greatly enhance counseling quality. Then, we propose a quality assurance mechanism using multiple levels of catalog, as well as 5G/6G slice inclusive of MEC, and conduct experiments to uncover issues related to the 4G. Results indicate that the number of speech recognition errors in Internet Cloud is more than twofold compared to edge computing, implying that quality assurance using 5G/6G in conjunction with VICA Counseling (ro)bot has higher efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965220 | PMC |
http://dx.doi.org/10.1007/s40747-022-00664-2 | DOI Listing |