A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatiotemporal distribution of antimicrobial resistant organisms in different water environments in urban and rural settings of Bangladesh. | LitMetric

Spatiotemporal distribution of antimicrobial resistant organisms in different water environments in urban and rural settings of Bangladesh.

Sci Total Environ

Food Safety and One Health Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA. Electronic address: amin.islam@

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spatial distribution of clinically important antibiotic resistant bacteria (ARB) and associated genes is important to identify the environmental distribution of contamination and 'hotspots' of antimicrobial resistance (AMR). We conducted an integrated survey of AMR in drinking water, wastewater and surface water (rivers and ponds) in three settings in Bangladesh: rural households, rural poultry farms, and urban food markets. Spatial mapping was conducted via geographic information system (GIS) using ArcGIS software. Samples (n = 397) were analyzed for the presence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec), carbapenem-resistant E. coli (CR-Ec) and resistance genes (blabla). In rural households, 5% of drinking water supply samples tested positive for ESBL-Ec, and a high proportion of wastewater, pond and river water samples were positive for ESBL-Ec (90%, 76%, and 85%, respectively). In poultry farms, 10% of drinking water samples tested positive for ESBL-Ec compared to a high prevalence in wastewater, pond and river water (90%, 68%, and 85%, respectively). CR-Ec prevalence in household wastewater and pond water was relatively low (8% and 5%, respectively) compared to river water (33%). In urban areas, 38% of drinking water samples and 98% of wastewater samples from food markets tested positive for ESBL-Ec while 30% of wastewater samples tested positive for CR-Ec. Wastewaters had the highest concentrations of ESBL-Ec, CR-Ec, bla and bla and these were significantly higher in urban compared to rural samples (p < 0.05). ESBL-Ec is ubiquitous in drinking water, wastewater and surface water bodies in both rural and urban areas of Bangladesh. CR-Ec is less widespread but found at a high prevalence in wastewater discharged from urban food markets and in rural river samples. Surveillance and monitoring of antibiotic resistant organisms and genes in waterbodies is an important first step in addressing environmental dimensions of AMR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154890DOI Listing

Publication Analysis

Top Keywords

drinking water
16
tested positive
16
positive esbl-ec
16
samples tested
12
wastewater pond
12
river water
12
water samples
12
water
10
settings bangladesh
8
rural households
8

Similar Publications