A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tackling the Challenges in Scene Graph Generation With Local-to-Global Interactions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we seek new insights into the underlying challenges of the scene graph generation (SGG) task. Quantitative and qualitative analysis of the visual genome (VG) dataset implies: 1) ambiguity: even if interobject relationship contains the same object (or predicate), they may not be visually or semantically similar; 2) asymmetry: despite the nature of the relationship that embodied the direction, it was not well addressed in previous studies; and 3) higher-order contexts: leveraging the identities of certain graph elements can help generate accurate scene graphs. Motivated by the analysis, we design a novel SGG framework, Local-to-global interaction networks (LOGINs). Locally, interactions extract the essence between three instances of subject, object, and background, while baking direction awareness into the network by explicitly constraining the input order of subject and object. Globally, interactions encode the contexts between every graph component (i.e., nodes and edges). Finally, Attract and Repel loss is utilized to fine-tune the distribution of predicate embeddings. By design, our framework enables predicting the scene graph in a bottom-up manner, leveraging the possible complementariness. To quantify how much LOGIN is aware of relational direction, a new diagnostic task called Bidirectional Relationship Classification (BRC) is also proposed. Experimental results demonstrate that LOGIN can successfully distinguish relational direction than existing methods (in BRC task), while showing state-of-the-art results on the VG benchmark (in SGG task).

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3159990DOI Listing

Publication Analysis

Top Keywords

scene graph
12
challenges scene
8
graph generation
8
sgg task
8
subject object
8
relational direction
8
graph
5
tackling challenges
4
scene
4
generation local-to-global
4

Similar Publications