Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Fine tuning and switching of nonlinear optical response of ferrocene chromophores has been an area of considerable significance as evidenced by a large number of reports in the current literature. In this personal account, we present linear/nonlinear behavior and structure-activity relationships of several classes of donor-π-acceptor designs using organometallic and organic materials, developed by our research group during the last decade. The results especially the electronic absorption spectral and the hyper-Rayleigh scattering have been supported by theoretical calculations. Exploiting the redox behavior of ferrocene donor, we have demonstrated switching of quadratic nonlinear optical responses with reversible redox chemistry, which is a useful attribute of nonlinear optical materials. Based on the ease in synthesis, structure diversification and structure-based large and switchable second-order optical nonlinearity, these materials are potential candidates for electro-optic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202200024 | DOI Listing |