Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In bryophytes (i.e., mosses, liverworts, and hornworts), extant representatives of early land plants, plasmodesmata have been described in a wide range of tissues. Although their contribution to bryophyte morphogenesis remains largely unexplored, several recent studies have suggested that the deposition of callose around plasmodesmata might regulate developmental and physiological responses in mosses. In this chapter, we provide a protocol to image and quantify callose levels in the filamentous body of the model moss Physcomitrium (Physcomitrella) patens and discuss possible alternatives and pitfalls. More generally, this protocol establishes a framework to explore the distribution of callose in other bryophytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2132-5_11 | DOI Listing |