Parasitism by metacercariae modulates the morphological, organic and mechanical responses of the shell of an intertidal bivalve to environmental drivers.

Sci Total Environ

Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Ch

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environmental variation alters biological interactions and their ecological and evolutionary consequences. In coastal systems, trematode parasites affect their hosts by disrupting their life-history traits. However, the effects of parasitism could be variable and dependent on the prevailing environmental conditions where the host-parasite interaction occurs. This study compared the effect of a trematode parasite in the family Renicolidae (metacercariae) on the body size and the shell organic and mechanical characteristics of the intertidal mussels Perumytilus purpuratus, inhabiting two environmentally contrasting localities in northern and central Chile (ca. 1600 km apart). Congruent with the environmental gradient along the Chilean coast, higher levels of temperature, salinity and pCO, and a lower pH characterise the northern locality compared to that of central Chile. In the north, parasitised individuals showed lower body size and shell resistance than non-parasitised individuals, while in central Chile, the opposite pattern was observed. Protein level in the organic matter of the shell was lower in the parasitised hosts than in the non-parasitised ones regardless of the locality. However, an increase in polysaccharide levels was observed in the parasitised individuals from central Chile. These results evidence that body size and shell properties of P. purpuratus vary between local populations and that they respond differently when confronting the parasitism impacts. Considering that the parasite prevalence reaches around 50% in both populations, if parasitism is not included in the analysis, the true response of the host species would be masked by the effects of the parasite, skewing our understanding of how environmental variables will affect marine species. Considering parasitism and identifying its effects on host species faced with environmental drivers is essential to understand and accurately predict the ecological consequences of climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154747DOI Listing

Publication Analysis

Top Keywords

central chile
16
body size
12
size shell
12
organic mechanical
8
environmental drivers
8
parasitised individuals
8
individuals central
8
host species
8
environmental
6
parasitism
5

Similar Publications

Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.

View Article and Find Full Text PDF

This study examines the policy investments in Primary Health Care (PHC) within the health systems of Brazil, Chile, and Colombia, highlighting their contributions toward achieving Universal Health Coverage (UHC). Employing a qualitative methodology, the research includes an institutional historical review and interviews with key stakeholders to analyze the development of PHC financing policies and practices in these countries. Brazil, with its Unified Health System (SUS), demonstrates federal leadership through initiatives like Requalifica UBS and the new PAC, albeit facing challenges in regional equity and monitoring.

View Article and Find Full Text PDF

Tree cavities are critical habitats for numerous vertebrate species, serving as keystone resources for nesting, roosting, and shelter. We document the first evidence of an individual güiña () breeding within a tree cavity of a standing dead tree. We explore its implications on breeding productivity and complementing this record with evidence from camera trap surveys conducted in temperate forests of south-central Chile.

View Article and Find Full Text PDF

Molecular switches and real-time ion sensing in pyridinium circuits a single-molecule STM-break junction.

Nanoscale Horiz

September 2025

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.

The functional electronic and spectro-electrochemical properties of two structural pyridinium isomers, Py_Down-BF and Py_Up-BF, were studied at the single-molecule level using the STM-BJ technique. These isomers differ in the position of the redox-active pyridinium core. The aim was to identify the role of core's position in promoting reversible switching between electromers (redox isomers) in solution and at the gold-pyridinium-gold junction circuit.

View Article and Find Full Text PDF

Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.

View Article and Find Full Text PDF