A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The understanding of how microbiomes assemble, function, and evolve requires metagenomic tools that can resolve microbiota compositions at the strain level. However, the identification and tracking of microbial strains in fecal metagenomes is challenging and available tools variably classify subspecies lineages, which affects their applicability to infer microbial persistence and transfer.

Results: We introduce SameStr, a bioinformatic tool that identifies shared strains in metagenomes by determining single-nucleotide variants (SNV) in species-specific marker genes, which are compared based on a maximum variant profile similarity. We validated SameStr on mock strain populations, available human fecal metagenomes from healthy individuals and newly generated data from recurrent Clostridioides difficile infection (rCDI) patients treated with fecal microbiota transplantation (FMT). SameStr demonstrated enhanced sensitivity to detect shared dominant and subdominant strains in related samples (where strain persistence or transfer would be expected) when compared to other tools, while being robust against false-positive shared strain calls between unrelated samples (where neither strain persistence nor transfer would be expected). We applied SameStr to identify strains that are stably maintained in fecal microbiomes of healthy adults over time (strain persistence) and that successfully engraft in rCDI patients after FMT (strain engraftment). Taxonomy-dependent strain persistence and engraftment frequencies were positively correlated, indicating that a specific core microbiota of intestinal species is adapted to be competitive both in healthy microbiomes and during post-FMT microbiome assembly. We explored other use cases for strain-level microbiota profiling, as a metagenomics quality control measure and to identify individuals based on the persisting core gut microbiota.

Conclusion: SameStr provides for a robust identification of shared strains in metagenomic sequence data with sufficient specificity and sensitivity to examine strain persistence, transfer, and engraftment in human fecal microbiomes. Our findings identify a persisting healthy adult core gut microbiota, which should be further studied to shed light on microbiota contributions to chronic diseases. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951724PMC
http://dx.doi.org/10.1186/s40168-022-01251-wDOI Listing

Publication Analysis

Top Keywords

strain persistence
20
core gut
12
persistence transfer
12
strain
9
persisting core
8
gut microbiota
8
fecal metagenomes
8
shared strains
8
human fecal
8
rcdi patients
8

Similar Publications