Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In recent years, the two-dimensional material MXene has shown great advantages in the field of wearable electronics and pressure sensors. Toward advanced applications, achieving a conformal pressure sensor with ultrathin thickness and great flexibility through a simple preparation principle, while maintaining its high sensitivity and wide detection range, is still a key challenge for the development of high-performance pressure sensors. Herein, we proposed an optimized mild LiF/HCl etching scheme and successfully achieved a high-concentration (>25 mg/mL) preparation of few-layer TiCT MXene. Combining the prepared MXene with an aramid nanofiber (ANF), we designed an ultrathin layered pressure sensor based on an MXene/ANF composite through layer-by-layer suction filtration. The mechanical strength is greatly enhanced by composition with the ANF, while the pure MXene film is fragile. The sensor achieves a high sensitivity of 16.7 kPa, wide detection range (>100 kPa), only 10 μm thickness, great flexibility, and up to 10% stretchability, which are greatly beneficial to practical sensors. We demonstrated the wide application perspective of the sensor in human motion monitoring and human-machine interfaces from low pressure (human pulse) to high pressure (push-up).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c01914 | DOI Listing |