98%
921
2 minutes
20
Reconstruction of fluvial style changes in the San River in the Subcarpathian Basins is based on geomorphological and sedimentological analyses. The time control of alluvial fills and temporal changes in the river channel are derived from radiocarbon and optically stimulated luminescence dating combined with independent pollen-based biochronostratigraphy. The results showed that the alluvial plain of the braided (BR) or braided-meandering (BR-M?) river was abandoned before 12,800 cal BP. Large meanders (LM) were cut off in the older part of the Younger Dryas (YD; ca. 12,600 cal BP), and in the younger part of this period (ca. 12,450 cal BP). The small meanders (SM) developed at the end of the YD and were abandoned at the onset of the Preboreal (PB; ca.11,550 cal BP). The erosion phase at the YD-PB transition, reported from many valleys in Central Europe, was not confirmed in the study area. The full cycle of San River channel transformation (BR (BR-M?) → LM → SM); was estimated to be approximately 1200 years. According to the palynological data, open pine forests with birch that survived from the end of the Allerød dominated the landscape of the river valley during the YD cooling and did not undergo major changes during the warming in the early PB. Therefore, we assume that the influence of vegetation changes in the San River channel pattern transformation was nonsignificant. The location of the studied palaeochannels in the floodbasin filled with silty clayey deposits may have influenced the formation of relatively narrow and deep channels, than that of much the wider and shallower meanders from the YD, situated several kilometres downstream of the surveyed sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154700 | DOI Listing |
JAMA Psychiatry
September 2025
Denovo Biopharma LLC, San Diego, California.
Importance: This study represents a first successful use of a genetic biomarker to select potential responders in a prospective study in psychiatry. Liafensine, a triple reuptake inhibitor, may become a new precision medicine for treatment-resistant depression (TRD), a major unmet medical need.
Objective: To determine whether ANK3-positive patients with TRD benefit from a 1-mg and/or 2-mg daily oral dose of liafensine, compared with placebo, in a clinical trial.
Environ Res
September 2025
Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.
Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).
View Article and Find Full Text PDFPNAS Nexus
September 2025
School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98105, USA.
Animal populations often display coherent temporal fluctuations in their abundance, with far-ranging implications for species persistence and ecosystem stability. The key mechanisms driving spatial population synchrony include organismal dispersal, spatially correlated environmental dynamics (Moran effect) and concordant consumer-resource dynamics. Disentangling these mechanisms, however, is notoriously difficult in natural systems, and the extent to which the biotic environment (intensity and types of biotic interactions) mediates metapopulation dynamics remains a largely unanswered question.
View Article and Find Full Text PDFProc Biol Sci
September 2025
University of California Santa Barbara, Santa Barbara, CA, USA.
Mosquito-borne diseases are deeply embedded within ecological communities, with environmental changes-particularly climate change-shaping their dynamics. Increasingly intense droughts across the globe have profound implications for the transmission of these diseases, as drought conditions can alter mosquito breeding habitats, host-seeking behaviours and mosquito-host contact rates. To quantify the effect of drought on disease transmission, we use West Nile virus as a model system and leverage a robust mosquito and virus dataset consisting of over 500 000 trap nights collected from 2010 to 2023, spanning a historic drought period followed by atmospheric rivers.
View Article and Find Full Text PDFSci Rep
August 2025
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
While CdZnTe (CZT) and CdZnTeSe (CZTS) semiconductors have emerged as compounds for room-temperature gamma and X-ray detection materials, they continue to be constrained by the formation of Te-inclusion defects generated during the growth and post-growth phases of the material, which adversely affect the detector performance. We demonstrate the utility of multimodal microscopic imaging and analysis for the characterization of the optical and electronic properties of Te inclusions in CZT and CZTS crystals at both micron and nanometer length scales. Having first identified regions with micron-scale Te inclusions using confocal Raman microscopy techniques, optically coupled infrared scattering near-field optical microscopic mapping was performed to map the distribution of these inclusions with nanometer spatial resolution and correlate the presence of Te inclusions in the matrix with other properties.
View Article and Find Full Text PDF