A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077414PMC
http://dx.doi.org/10.1093/protein/gzac002DOI Listing

Publication Analysis

Top Keywords

binding domain
24
receptor binding
20
stabilization sars-cov-2
8
binding
8
protein core
8
deep mutational
8
mutational scanning
8
computational stabilization
8
original receptor
8
receptor
6

Similar Publications