Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in spp.

J Med Microbiol

UK Health Security Agency, Research and Development, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We are becoming increasingly reliant on the effectiveness of biocides to combat the spread of Gram-negative multi-drug-resistant (MDR) pathogens, including . It has been shown that chlorhexidine exposure can lead to mutations in the efflux pump repressor regulators SmvR and RamR, but the contribution of each individual efflux pump to biocide tolerance is unknown. Multiple efflux pumps, including SmvA and AcrAB-TolC, are involved in increased tolerance to biocides. However, strains with upregulated AcrAB-TolC caused by biocide exposure are more problematic due to their increased MDR phenotype. To investigate the role of AcrAB-TolC in the tolerance to several biocides, including chlorhexidine, and the potential threat of cross-resistance to antibiotics through increased expression of this efflux pump. Antimicrobial susceptibility testing was performed on isolates with mutations selected for after exposure to chlorhexidine, as well as transposon mutants in components and regulators of AcrAB-TolC. RTPCR was used to detect the expression levels of this pump after biocide exposure. Strains from the globally important ST258 clade were compared for genetic differences in -TolC and its regulators and for phenotypic differences in antimicrobial susceptibility. Cross-resistance to antimicrobials was observed following mutations in . Exposure to chlorhexidine led to increased expression of and its activator , and transposon mutants in AcrAB-TolC have increased susceptibility to several biocides, including chlorhexidine. Variations in within the ST258 clade led to an increase in tolerance to certain biocides, although this was strain dependent. One strain, MKP103, that had increased levels of biocide tolerance showed a unique mutation in that was reflected in enhanced expression of and . MKP103 transposon variants were able to further enhance their tolerance to specific biocides with mutations affecting SmvA. Biocide tolerance in is dependent upon several components, with increased efflux through AcrAB-TolC being an important one.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176267PMC
http://dx.doi.org/10.1099/jmm.0.001496DOI Listing

Publication Analysis

Top Keywords

efflux pump
16
including chlorhexidine
12
biocide tolerance
12
tolerance biocides
12
tolerance
8
acrab-tolc tolerance
8
pump biocide
8
biocide exposure
8
biocides including
8
increased expression
8

Similar Publications

Developing Potent Therapeutics for Liver Cancer Chemoresistance via an RNA Nanotech and Series-Circuit-Christmas-Bulb Mechanism Targeting ABC Transporters.

Mol Pharm

September 2025

Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.

Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.

View Article and Find Full Text PDF

In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in TT01.

View Article and Find Full Text PDF

Reprogramming resistance: phage-antibiotic synergy targets efflux systems in ESKAPEE pathogens.

mBio

September 2025

Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.

View Article and Find Full Text PDF

Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives as AcrB inhibitors with potent antibiofilm effect for reversing bacterial multidrug resistance.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:

A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.

View Article and Find Full Text PDF