A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highlighting the efficiency of ultrasound-based emulsifier-free emulsions to penetrate reconstructed human skin. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The cosmetic industry endeavours to strengthen the greener and safer claims of processes to respond to the high demand from customers for natural and environmentally friendly products. High-frequency ultrasonication technology (HFUT) is a physical process enabling the stabilization of emulsions without requiring additional ingredients, such as emulsifying surfactants (ES) to be introduced into the formulations. In this study, key formulation characteristics of an emulsion synthesized by HFUT and a reference emulsion (RE) were compared, as well as the permeation kinetics of caffeine, used as a model active cosmetic ingredient, from both types of emulsions.

Methods: The pH, droplet size and viscosity of emulsions prepared by the HFUT and the RE were determined and compared. The permeation of caffeine from the HFUT emulsion and the RE applied to the surface of reconstructed human epidermis (RHE) models was compared.

Results: The ES-free formulations prepared by HFUT displayed a nearly 2-fold lower average droplet size and over 3-fold greater viscosity, compared to the RE. Despite these differences, the absence of ES in the HFUT emulsion did not significantly alter the permeation kinetics of caffeine through RHE. The caffeine steady-state flux, lag time and permeability coefficients differed by 20%-30% only.

Conclusion: This study demonstrates the potential of the HFUT to yield topical cosmetic products with lower requirements ingredients-wise, without losing efficacy, supporting the possible implementation of the technology in the cosmetic industry.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ics.12772DOI Listing

Publication Analysis

Top Keywords

reconstructed human
8
cosmetic industry
8
permeation kinetics
8
kinetics caffeine
8
droplet size
8
prepared hfut
8
hfut emulsion
8
hfut
7
highlighting efficiency
4
efficiency ultrasound-based
4

Similar Publications