Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon nanotube (CNT)-based electrodes are cheap, highly performing, and robust platforms for the fabrication of electrochemical sensors. Engineering programmable DNA nanotechnologies on the CNT surface can support the construction of new electrochemical DNA sensors providing an amperometric output in response to biomolecular recognition. This is a significant challenge, since it requires gaining control of specific hybridization processes and functional DNA systems at the interface, while limiting DNA physisorption on the electrode surface, which contributes to nonspecific signal. In this study, we provide design rules to program dynamic DNA structures at the surface of single-walled carbon nanotubes electrodes, showing that specific DNA interactions can be monitored through measurement of the current signal provided by redox-tagged DNA strands. We propose the use of pyrene as a backfilling agent to reduce nonspecific adsorption of reporter DNA strands and demonstrate the controlled formation of DNA duplexes on the electrode surface, which we then apply in the design and conduction of programmable DNA strand displacement reactions. Expanding on this aspect, we report the development of novel amperometric hybridization platforms based on artificial DNA structures templated by the small molecule melamine. These platforms enable dynamic strand exchange reactions orthogonal to conventional toehold-mediated strand displacement and may support new strategies in electrochemical sensing of biomolecular targets, combining the physicochemical properties of nanostructured carbon-based materials with programmable nucleic acid hybridization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968946PMC
http://dx.doi.org/10.1021/acs.analchem.1c05294DOI Listing

Publication Analysis

Top Keywords

dna
12
dynamic dna
8
surface single-walled
8
single-walled carbon
8
carbon nanotube
8
hybridization platforms
8
programmable dna
8
electrode surface
8
dna structures
8
dna strands
8

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

The impact of melatonin-enriched media on epigenetic and perinatal changes induced by embryo culture in a mouse model.

J Assist Reprod Genet

September 2025

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.

Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).

View Article and Find Full Text PDF

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF