A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Augmented reality (AR) offers a new medical treatment approach. We aimed to evaluate frameless (mask) fixation navigation using a 3D-printed patient model with fixed-AR technology for gamma knife radiosurgery (GKRS). Fixed-AR navigation was developed using the inside-out method with visual inertial odometry algorithms, and the flexible Quick Response marker was created for object-feature recognition. Virtual 3D-patient models for AR-rendering were created via 3D-scanning utilizing TrueDepth and cone-beam computed tomography (CBCT) to generate a new GammaKnife Icon™ model. A 3D-printed patient model included fiducial markers, and virtual 3D-patient models were used to validate registration accuracy. Registration accuracy between initial frameless fixation and re-fixation navigated fixed-AR was validated through visualization and quantitative method. The quantitative method was validated through set-up errors, fiducial marker coordinates, and high-definition motion management (HDMM) values. A 3D-printed model and virtual models were correctly overlapped under frameless fixation. Virtual models from both 3D-scanning and CBCT were enough to tolerate the navigated frameless re-fixation. Although the CBCT virtual model consistently delivered more accurate results, 3D-scanning was sufficient. Frameless re-fixation accuracy navigated in virtual models had mean set-up errors within 1 mm and 1.5° in all axes. Mean fiducial marker differences from coordinates in virtual models were within 2.5 mm in all axes, and mean 3D errors were within 3 mm. Mean HDMM difference values in virtual models were within 1.5 mm of initial HDMM values. The variability from navigation fixed-AR is enough to consider repositioning frameless fixation without CBCT scanning for treating patients fractionated with large multiple metastases lesions (> 3 cm) who have difficulty enduring long beam-on time. This system could be applied to novel GKRS navigation for frameless fixation with reduced preparation time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927150PMC
http://dx.doi.org/10.1038/s41598-022-08390-yDOI Listing

Publication Analysis

Top Keywords

frameless fixation
20
virtual models
20
navigation frameless
8
augmented reality
8
3d-printed patient
8
patient model
8
virtual
8
virtual 3d-patient
8
3d-patient models
8
registration accuracy
8

Similar Publications