98%
921
2 minutes
20
Recent studies have unveiled the unique roles of extracellular vesicles (EVs) in various cellular processes including protein degradation, transport, and intercellular communication. However, the EVs of Chinese hamster ovary (CHO) cells, the workhorse of biologics manufacturing, have not been well-characterized despite their significant roles in protein production. Herein, we successfully isolated CHO EVs from CHO fed-batch cultures and identified their messenger RNA (mRNA) and micro RNA (miRNA) contents through next-generation sequencing. We found that mRNAs corresponding to oxidative phosphorylation were highly enriched in microvesicles (large EVs) but absent in exosomes (small EVs). We also found that both large EVs and small EVs had enriched mRNA species corresponding to key signaling pathways for cell proliferation, survival, and growth, including the TGFβ and PI3K/Akt pathways. In addition, the enrichment of miR-196a-5p in both small EVs and large EVs suggests an anti-apoptotic and proliferative function for EVs through intercellular communication. The identification of these mRNAs and miRNAs associated with cell growth and survival sheds light on the potential role of extracellular vesicles in the context of biologics manufacturing and may help further optimize CHO biologics production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2022.03.004 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, 05029, Republic of Korea.
Cancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDFEMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen
Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.
View Article and Find Full Text PDF