98%
921
2 minutes
20
Bacteria belonging to have the ability to produce a wide range of secondary metabolites through a shift from primary to secondary metabolism regulated by complex networks activated after vegetative growth terminates. Despite considerable effort to understand the regulatory elements governing gene expression related to primary and secondary metabolism in , system-level information remains limited. In this study, we integrated four multi-omics datasets from NBRC 13350: RNA-seq, ribosome profiling, dRNA-seq, and Term-Seq, to analyze the regulatory elements of transcription and translation of differentially expressed genes during cell growth. With the functional enrichment of gene expression in different growth phases, one sigma factor regulon and four transcription factor regulons governing differential gene transcription patterns were found. In addition, the regulatory elements of transcription termination and post-transcriptional processing at transcript 3'-end positions were elucidated, including their conserved motifs, stem-loop RNA structures, and non-terminal locations within the polycistronic operons, and the potential regulatory elements of translation initiation and elongation such as 5'-UTR length, RNA structures at ribosome-bound sites, and codon usage were investigated. This comprehensive genetic information provides a foundational genetic resource for strain engineering to enhance secondary metabolite production in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914203 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.844200 | DOI Listing |
Commun Chem
September 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, Ch
Precision fermentation represents an innovative cell-based production approach that employs synthetic biology and metabolic engineering tools, revolutionizing global food production by utilizing "microbial cell factories" to produce added-value ingredients. However, its global implementation is hindered by technological and scalability bottlenecks, regulatory fragmentation, regional accessibility and consumer acceptance, and nutritional trade-offs challenges. This review utilizes illustrated case studies and modeling analysis to present a detailed exploration of precision fermentation intersecting with global cell-based food production, discussing actionable research gaps and insights as well as advanced bioengineering practices and analytical techniques, to address these challenges for ongoing academic research, industrial applications and policy initiatives, thus supporting the transition of fermentation-enabled food production toward efficient and sustainable manufacturing.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China; Liaoning Key Laboratory of Mar
The cAMP response element modulator (CREM) is a regulatory transcription factor downstream of cAMP signaling, functioning either as a transcriptional activator or repressor in regulating the proliferation and differentiation of immune cells. In the present study, CgCREM with a conserved pKID domain and a BRLZ domain was identified from Pacific oyster Crassostrea gigas. The mRNA transcripts of CgCREM were found to be highly expressed in embryonic stages, especially in the blastula and trochophore.
View Article and Find Full Text PDFCell Genom
September 2025
Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Department of Biology, Humboldt Universität Berlin, 10117 Berlin, Germany. Electronic address: uwe.ohler@mdc-berlin
Enhancers are known to spatiotemporally regulate gene transcription, yet the identification of enhancers and their target genes is often indirect, low resolution, and/or assumptive. To identify and functionally perturb enhancers at their endogenous sites, we performed a pooled tiling CRISPR activation (CRISPRa) screen surrounding PHOX2B, a master regulator of neuronal cell fate and a key player in neuroblastoma, and found many CRISPRa-responsive elements (CaREs) that alter cellular growth. To determine CaRE target genes, we developed TESLA-seq (targeted single-cell activation), which combines CRISPRa screening with targeted single-cell RNA sequencing and enables the parallel readout of the effect of hundreds of enhancers on all genes in the locus.
View Article and Find Full Text PDFElife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDF