A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Kv1.1 channels inhibition in the rat motor cortex recapitulates seizures associated with anti-LGI1 encephalitis. | LitMetric

Kv1.1 channels inhibition in the rat motor cortex recapitulates seizures associated with anti-LGI1 encephalitis.

Prog Neurobiol

Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospit

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autoimmune encephalitis associated with antibodies directed against the leucine-rich glioma inactivated 1 (LGI1) protein is responsible for specific tonic-dystonic motor seizures. Although dysfunctions in neuronal excitability have been associated with anti-LGI1 autoantibodies, their relation to seizures remain inconclusive. We developed a new in vivo experimental rat model to determine whether inhibition of Kv1.1 channels by dentrotoxin-K (DTX) in the primary motor cortex (M1) could recapitulate the human seizures and to elucidate their subtending cortical mechanisms. Comparing electro-clinical features of DTX-induced seizures in rats with those recorded from a cohort of anti-LGI1 encephalitis patients revealed striking similarities in their electroencephalographic (EEG) signature, frequency of recurrence and semiology. By combining multi-site extracellular and intracellular recordings of M1 pyramidal neurons in DTX rats, we demonstrated that the blockade of Kv1.1 channels induced a sequence of changes in neuronal excitability and synaptic activity, leading to massive suprathreshold membrane depolarizations underlying the paroxysmal EEG activity. Our results suggest the central role of Kv1.1 channels disruption in the emergence of anti-LGI1-associated seizures and suggest that this new rodent model could serve future investigations on ictogenesis in autoimmune encephalitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2022.102262DOI Listing

Publication Analysis

Top Keywords

kv11 channels
16
motor cortex
8
associated anti-lgi1
8
anti-lgi1 encephalitis
8
autoimmune encephalitis
8
neuronal excitability
8
seizures
6
kv11
4
channels inhibition
4
inhibition rat
4

Similar Publications