98%
921
2 minutes
20
Though the complementary power field effect transistors (FETs), e.g., metal-oxide-semiconductor-FETs (MOSFETs) based on wide bandgap materials, enable low switching losses and on-resistance, p-channel FETs are not feasible in any wide bandgap material other than diamond. In this paper, we propose the first work to investigate the impact of fixed positive surface charge density on achieving normally-off and controlling threshold voltage operation obtained on p-channel two-dimensional hole gas (2DHG) hydrogen-terminated (C-H) diamond FET using nitrogen doping in the diamond substrate. In general, a p-channel diamond MOSFET demonstrates the normally-on operation, but the normally-off operation is also a critical requirement of the feasible electronic power devices in terms of safety operation. The characteristics of the C-H diamond MOSFET have been analyzed with the two demonstrated charge sheet models using the two-dimensional Silvaco Atlas TCAD. It shows that the fixed-Fermi level in the bulk diamond is 1.7 eV (donor level) from the conduction band minimum. However, the upward band bending has been obtained at AlO/SiO/C-H diamond interface indicating the presence of inversion layer without gate voltage. The fixed negative charge model exhibits a strong inversion layer for normally-on FET operation, while the fixed positive charge model shows a weak inversion for normally-off operation. The maximum current density of a fixed positive interface charge model of the AlO/C-H diamond device is - 290 mA/mm, which corresponds to that of expermental result of AlO/SiO/C-H diamond - 305 mA/mm at a gate-source voltage of - 40 V. Also, the threshold voltage V is relatively high at V = - 3.5 V, i.e., the positive charge model can reproduce the normally-off operation. Moreover, we also demonstrate that the V and transconductance g correspond to those of the experimental work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913839 | PMC |
http://dx.doi.org/10.1038/s41598-022-05180-4 | DOI Listing |
Langmuir
September 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDF