Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The laser ranging interferometer onboard the Gravity Recovery and Climate Experiment Follow-On mission proved the feasibility of an interferometric sensor for inter-satellite length tracking with sub-nanometer precision, establishing an important milestone for space laser interferometry and the general expectation that future gravity missions will employ heterodyne laser interferometry for satellite-to-satellite ranging. In this paper, we present the design of an on-axis optical bench for next-generation laser ranging which enhances the received optical power and the transmit beam divergence, enabling longer interferometer arms and relaxing the optical power requirement of the laser assembly. All design functionalities and requirements are verified by means of computer simulations. A thermal analysis is carried out to investigate the robustness of the proposed optical bench to the temperature fluctuations found in orbit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914982 | PMC |
http://dx.doi.org/10.3390/s22052070 | DOI Listing |