Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study we evaluated possible differences in metabolomic profiles of spent embryo culture media (SECM) of human embryos with distinct morphology, karyotype, and implantation outcomes. A total of 153 samples from embryos of patients undergoing in vitro fertilization (IVF) programs were collected and analyzed by HPLC-MS. Metabolomic profiling and statistical analysis revealed clear clustering of day five SECM from embryos with different morphological classes and karyotype. Profiling of day five SECM from embryos with different implantation outcomes showed 241 significantly changed molecular ions in SECM of successfully implanted embryos. Separate analysis of paired SECM samples on days three and five revealed 46 and 29 molecular signatures respectively, significantly differing in culture media of embryos with a successful outcome. Pathway enrichment analysis suggests certain amino acids, vitamins, and lipid metabolic pathways to be crucial for embryo implantation. Differences between embryos with distinct implantation potential are detectable on the third and fifth day of cultivation that may allow the application of culture medium analysis in different transfer protocols for both fresh and cryopreserved embryos. A combination of traditional morphological criteria with metabolic profiling of SECM may increase implantation rates in assisted reproductive technology programs as well as improve our knowledge of the human embryo metabolism in the early stages of development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911215PMC
http://dx.doi.org/10.3390/ijms23052706DOI Listing

Publication Analysis

Top Keywords

culture media
12
embryos distinct
12
implantation outcomes
12
embryos
9
analysis revealed
8
profiles spent
8
human embryos
8
distinct morphology
8
morphology karyotype
8
karyotype implantation
8

Similar Publications

The impact of melatonin-enriched media on epigenetic and perinatal changes induced by embryo culture in a mouse model.

J Assist Reprod Genet

September 2025

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.

Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).

View Article and Find Full Text PDF

Human Dental Pulp Stem Cells (hDPSCs) represent a remarkable cell source for tissue engineering and regenerative medicine, offering significant potential for use in personalized medicine and autologous therapies. Decellularized extracellular matrix (ECM)-derived biological scaffolds show excellent properties for supporting cell delivery and growth in both in vitro and in vivo applications. These scaffolds provide essential biochemical cues that regulate cellular functions and offer a more accurate representation of the in vivo environment.

View Article and Find Full Text PDF

Fetal bovine serum (FBS) is an undefined additive that is ubiquitous to mammalian cell culture media and whose functional contributions to promoting cell proliferation remain poorly understood. Efforts to replace serum supplementation in culture media have been hindered by an incomplete understanding of the environmental requirements fulfilled by FBS. Here, we use a combination of live-cell imaging and quantitative lipidomics to elucidate the role of serum in supporting proliferation.

View Article and Find Full Text PDF

Garlic is an important bulb vegetable which is used for both culinary and medical purposes worldwide. In vitro propagation is considered a promising technic for production and conservation of disease-free garlic seed. The efficiency of in vitro culture was studied for micropropagation of native Iranian garlic genotypes.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF