Detection of Bacterial α-l-Fucosidases with an -Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts.

Molecules

Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitswg 99, 3584 CG Utrecht, The Netherlands.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fucosidases are associated with several pathological conditions and play an important role in the health of the human gut. For example, fucosidases have been shown to be indicators and/or involved in hepatocellular carcinoma, breast cancer, and helicobacter pylori infections. A prerequisite for the detection and profiling of fucosidases is the formation of a specific covalent linkage between the enzyme of interest and the activity-based probe (ABP). The most commonly used fucosidase ABPs are limited to only one of the classes of fucosidases, the retaining fucosidases. New approaches are needed that allow for the detection of the second class of fucosidases, the inverting type. Here, we report an -quinone methide-based probe with an azide mini-tag that selectively labels both retaining and inverting bacterial α-l-fucosidases. Mass spectrometry-based intact protein and sequence analysis of a probe-labeled bacterial fucosidase revealed almost exclusive single labeling at two specific tryptophan residues outside of the active site. Furthermore, the probe could detect and image extracellular fucosidase activity on the surface of live bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911971PMC
http://dx.doi.org/10.3390/molecules27051615DOI Listing

Publication Analysis

Top Keywords

bacterial α-l-fucosidases
8
-quinone methide-based
8
methide-based probe
8
fucosidases
6
detection bacterial
4
α-l-fucosidases -quinone
4
probe
4
probe mapping
4
mapping probe-protein
4
probe-protein adducts
4

Similar Publications

The rapid increase in multidrug-resistant (MDR) bacteria and biofilm-associated infections has intensified the global need for innovative antimicrobial strategies. Phage therapy offers promising precision against MDR pathogens by utilizing the natural ability of phages to specifically infect and lyse bacteria. However, their clinical application is hampered by challenges such as narrow host range, immune clearance and limited efficacy within biofilms.

View Article and Find Full Text PDF

Objectives: Acute pyelonephritis (APN) is a common diagnosis among patients presenting to the Emergency Department (ED). It is treated by empiric antibiotics within the ED. With a rise in antimicrobial resistance globally, it is unknown whether patients are being managed with empiric antibiotics that are appropriate for the causative organisms of APN.

View Article and Find Full Text PDF

Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.

View Article and Find Full Text PDF

Patients with traumatic injuries who develop ventilator-associated pneumonia (VAP) incur a higher risk of developing multi-drug resistance. Shorter duration of antibiotic agents for early VAP at five days may reduce antibiotic agent exposure without worsening patient outcomes. This retrospective cohort study performed at a Level I Trauma Center included adult (≥16 years old) patients with trauma diagnosed with bronchoalveolar lavage (BAL)-proven early (within four days of intubation) bacterial VAP.

View Article and Find Full Text PDF

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF