Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Molecularly imprinted sol-gel silica (MIS) coupled to a microwave sensor was designed and used to detect phenylacetaldehyde (PAA), a chemical tracer of wine oxidation. The developed method is fast, cheap and could replace the classical chromatographic methods, which require a tedious sample preparation and are expensive. To reach our objective, five MIS and their control non-imprinted silica (NIS) were synthesized and their extraction capacity toward PAA was studied in hydro alcoholic medium. The selected polymers, based on this first step, were subjected to a selectivity study in the presence of PAA and three other competing molecules. The best polymer was integrated in a microwave sensor and was used to assess PAA in red wine. The developed sensor was able to detect PAA at the µg·L level, which is below the off-flavour threshold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911824 | PMC |
http://dx.doi.org/10.3390/molecules27051492 | DOI Listing |