98%
921
2 minutes
20
Chronic inflammation is a significant pathological process found in a range of disease states. Treatments to reduce inflammation in this family of diseases may improve symptoms and disease progression, but are largely limited by variable response rates, cost, and off-target effects. Macrophages are implicated in many inflammatory diseases for their critical role in the maintenance and resolution of inflammation. Macrophages exhibit significant plasticity to direct the inflammatory response by taking on an array of pro- and anti-inflammatory phenotypes based on extracellular cues. In this work, a nanoparticle has been developed to target sites of inflammation and reduce the inflammatory macrophage phenotype by mimicking the anti-inflammatory effect of apoptotic cell engulfment. The nanoparticle, comprised of a poly(lactide-co-glycolide) core, is coated with phosphatidylserine (PS)-supplemented cell plasma membrane to emulate key characteristics of the apoptotic cell surface. The particle surface is additionally functionalized with an acid-sensitive sheddable polyethylene glycol (PEG) moiety to increase the delivery of the nanoparticles to low pH environments such as those of chronic inflammation. In a mouse model of lipopolysaccharide-induced inflammation, particles were preferentially taken up by macrophages at the site and promoted an anti-inflammatory phenotype shift. This PEGylated membrane coating increased the delivery of nanoparticles to sites of inflammation and may be used as a tool alone or as a delivery scheme for additional cargo to reduce macrophage-associated inflammatory response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007911 | PMC |
http://dx.doi.org/10.1016/j.ijpharm.2022.121634 | DOI Listing |
J Infect Dis
September 2025
University of Veterinary Medicine Vienna, Infectiology, Vienna, Austria.
Frequent emergence of respiratory viruses with pandemic potential, like SARS-CoV-2 or influenza, underscores the need for broad-spectrum prophylaxis. Existing vaccines show reduced efficacy against newly emerged variants, and the ongoing risk of new outbreaks highlights the importance of alternative strategies to prevent infection and viral transmission. As respiratory viruses primarily enter through the nose, formulations targeting the nasal epithelium are attractive candidates to neutralize pathogens and thus prevent or minimize infection.
View Article and Find Full Text PDFDev Growth Differ
September 2025
Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.
Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.
View Article and Find Full Text PDFBackground: People with dementia who have a fall can experience both physical and psychological effects, often leading to diminished independence. Falls impose economic costs on the healthcare system. Despite elevated fall risks in dementia populations, evidence supporting effective home-based interventions remains limited.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFJBMR Plus
October 2025
Department of Endocrinology, Austin Health, Melbourne, 3084, Australia.
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but well-recognized complication of treatment with antiresorptive agents. Medication-related osteonecrosis of the external auditory canal (MROEAC), on the other hand, is even rarer and mostly reported during bisphosphonate exposure. Its pathophysiology is thought to involve complex multifactorial processes, including inhibition of bone remodeling, altered angiogenesis, infection, and inflammation.
View Article and Find Full Text PDF