A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current knowledge of the processes that shape prokaryotic community assembly in sea ice across polar ecosystems is scarce. Here, we coupled culture-dependent (bacterial isolation on R2A medium) and culture-independent (high-throughput 16S rRNA gene sequencing) approaches to provide the first comprehensive assessment of prokaryotic communities in the late winter ice and its underlying water along a natural salinity gradient in coastal Hudson Bay, an iconic cryo-environment that marks the ecological transition between Canadian Subarctic and Arctic biomes. We found that prokaryotic community assembly processes in the ice were less selective at low salinity since typical freshwater taxa such as Frankiales, Burkholderiales, and Chitinophagales dominated both the ice and its underlying water. In contrast, there were sharp shifts in community structure between the ice and underlying water samples at sites with higher salinity, with the orders Alteromonadales and Flavobacteriales dominating the ice, while the abovementioned freshwater taxa dominated the underlying water communities. Moreover, primary producers including Cyanobium (Cyanobacteria, Synechococcales) may play a role in shaping the ice communities and were accompanied by known Planctomycetes and Verrucomicrobiae taxa. Culture-dependent analyses showed that the ice contained pigment-producing psychrotolerant or psychrophilic bacteria from the phyla Proteobacteria, Actinobacteriota, and Bacteroidota, likely favored by the combination of low temperatures and the seasonal increase in sunlight. Our findings suggest that salinity, photosynthesis and dissolved organic matter are the main drivers of prokaryotic community structure in the late winter ice of coastal Hudson Bay, the ecosystem with the fastest sea ice loss rate in the Canadian North.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154286DOI Listing

Publication Analysis

Top Keywords

underlying water
16
sea ice
12
prokaryotic community
12
ice underlying
12
ice
11
prokaryotic communities
8
salinity gradient
8
community assembly
8
late winter
8
winter ice
8

Similar Publications