Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The diagnosis of plasma cell neoplasms requires accurate, and ideally precise, percentages. This plasma cell percentage is often determined by visual estimation of CD138-stained bone marrow biopsies and clot sections. While not necessarily inaccurate, estimates are by definition imprecise. For this study, we hypothesized that deep learning can be used to improve precision. We trained a semantic segmentation-based convolutional neural network (CNN) using annotations of CD138+ and CD138- cells provided by one pathologist on small image patches of bone marrow and validated the CNN on an independent test set of image patches using annotations from two pathologists and a non-deep learning commercial software. On validation, we found that the intraclass correlation coefficients for plasma cell percentages between the CNN and pathologist #1, a non-deep learning commercial software and pathologist #1, and pathologists #1 and #2 were 0.975, 0.892, and 0.994, respectively. The overall results show that CNN labels were almost as accurate as pathologist labels at a cell-by-cell level. Once satisfied with performance, we scaled-up the CNN to evaluate whole slide images (WSIs), and deployed the system as a workflow friendly web application to measure plasma cell percentages using snapshots taken from microscope cameras.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873946 | PMC |
http://dx.doi.org/10.1016/j.jpi.2022.100011 | DOI Listing |