A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning Accurately Quantifies Plasma Cell Percentages on CD138-Stained Bone Marrow Samples. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The diagnosis of plasma cell neoplasms requires accurate, and ideally precise, percentages. This plasma cell percentage is often determined by visual estimation of CD138-stained bone marrow biopsies and clot sections. While not necessarily inaccurate, estimates are by definition imprecise. For this study, we hypothesized that deep learning can be used to improve precision. We trained a semantic segmentation-based convolutional neural network (CNN) using annotations of CD138+ and CD138- cells provided by one pathologist on small image patches of bone marrow and validated the CNN on an independent test set of image patches using annotations from two pathologists and a non-deep learning commercial software. On validation, we found that the intraclass correlation coefficients for plasma cell percentages between the CNN and pathologist #1, a non-deep learning commercial software and pathologist #1, and pathologists #1 and #2 were 0.975, 0.892, and 0.994, respectively. The overall results show that CNN labels were almost as accurate as pathologist labels at a cell-by-cell level. Once satisfied with performance, we scaled-up the CNN to evaluate whole slide images (WSIs), and deployed the system as a workflow friendly web application to measure plasma cell percentages using snapshots taken from microscope cameras.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873946PMC
http://dx.doi.org/10.1016/j.jpi.2022.100011DOI Listing

Publication Analysis

Top Keywords

plasma cell
20
cell percentages
12
bone marrow
12
deep learning
8
cd138-stained bone
8
image patches
8
non-deep learning
8
learning commercial
8
commercial software
8
plasma
5

Similar Publications