Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of aziridinium electrophiles derived from β-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by H and N/N NMR spectroscopy. With -isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931729PMC
http://dx.doi.org/10.1021/jacs.1c13434DOI Listing

Publication Analysis

Top Keywords

sodium azide
12
hydrogen bonding
8
bonding phase-transfer
8
phase-transfer catalysis
8
metal alkali
8
alkali fluorides
8
transition state
8
azide anion
8
azide
7
asymmetric
5

Similar Publications

Metal pollution, particularly chromium, in water and food samples is a critical issue due to its transfer to the human body through the food chain and its threat to human health. Among the chromium species that can be found in water samples, chromates are classified as toxic by scientific authorities. Spectroscopic instruments have limitations in metal speciation analysis, and there is a need for suitable methods that allow chromium speciation.

View Article and Find Full Text PDF

Tetrazoles are highly significant in pharmaceuticals, drug delivery, and anticancer treatments. In this work, the development of a highly effective nanocatalyst, which was synthesized by functionalizing nanodiamonds (NDs) substrate with folic acid (FA) and stabilizing Cu(ii) on the nanocomposite. The ND@FA-Cu(ii) nanocatalyst has demonstrated superior thermal stability, non-toxicity, little catalyst consumption, and reusability (up to five cycles), rendering it both cost-effective and environmentally sustainable.

View Article and Find Full Text PDF

Pharmaceuticals in soil and groundwater: Analytical methods, sources, and mitigation techniques.

Sci Total Environ

August 2025

Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA.

Pharmaceuticals have long been used to treat diseases in humans and animals and to control pests of plants/crops. However, with the identification of these contaminants in the environment, it is of major concern. While they have been documented either in soil or groundwater as separate entities, there are limited investigations on their sources.

View Article and Find Full Text PDF

Introduction: We report a reproducible and sustainable catalytic system based on copper ion-crosslinked alginate hydrogels for the synthesis of 1,2,3-triazoles via aqueous 1,3-dipolar cycloaddition at room temperature. The catalyst, derived from a biodegradable matrix, is prepared through a simple, energy-efficient method and operates under mild, eco-friendly conditions.

Methods: Copper(II)-alginate hydrogels were prepared by ionic crosslinking.

View Article and Find Full Text PDF

Reporting negative Ames test results for Indian Acorus calamus L., rhizome, extracts, and beta asarone.

Indian J Pharmacol

September 2025

Department of Pharmacognosy and Phytochemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, India.

Objective: Acorus calamus L. (Sweet Flag), known in India as "Vacha," is widely used in traditional medicine, particularly for cognitive enhancement in infants. While traditionally considered safe, β-asarone - a key constituent - has shown potential genotoxicity in some in vitro studies.

View Article and Find Full Text PDF