Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tissue-engineered cornea endothelial sheets (TECES), created using a biocompatible thin and transparent carrier with corneal endothelial cells, could alleviate the shortage of donor corneas and provide abundant functional endothelial cells. In our previous clinical trials, the effectiveness and safety of the acellular porcine corneal stroma (APCS) applied in lamellar keratoplasty have been confirmed. In this study, we optimized the method to cut APCS into multiple 20 μm ultrathin lamellae by a cryostat microtome and investigated the feasibility of TECES by seeding rabbit corneal endothelial cells (RCECs) on ultrathin APCS. Cell adhesion, proliferation, and functional gene expression of RCECs on tissue-culture plastic and APCS of different thicknesses were compared. The results indicated that ultrathin lamellae were superior in increasing cell viability and maintaining cell functions. Analyzing with histology, electron microscopy, and immunofluorescence, we found that RCECs cultured on 20 μm ultrathin APCS for 5 days grew into a confluent monolayer with a density of 3726 ± 223 cells/mm and expressed functional biomarkers Na/K-ATPase and zonula occludens. After 14 days, RCECs formed an early stage of Descemet's membrane-like structure by synthesizing collagen IV and laminin. Human corneal endothelial cells were also used to further validate the supportive effect of ultrathin APCS on cells. The resulting constructs were flexible and tough enough to implant into rabbits' anterior chambers through small incisions. TECES adhered to the posterior corneal stroma, and the thickness of cornea gradually reduced to normal after grafting. These results indicate that the ultrathin APCS can serve as a tissue engineering carrier and might be a suitable alternative for endothelial cells expansion in endothelial keratoplasty.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.2c00039DOI Listing

Publication Analysis

Top Keywords

endothelial cells
20
corneal endothelial
16
ultrathin apcs
16
corneal stroma
12
endothelial
9
endothelial sheets
8
acellular porcine
8
porcine corneal
8
endothelial keratoplasty
8
μm ultrathin
8

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF