A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A conductivity-difference-based method for increasing dielectrophoretic (DEP) force for particle separation in a microfluidic chip is presented in this paper. By applying a direct-current (DC) voltage across two immiscible electrolyte solutions with a conductivity difference, an enhanced electric field gradient is generated at the liquid-liquid interface. Theoretical analysis based on equivalent circuit theory found that the gradient of the electric field squared increases with the decrease in the conductivity ratio of the two liquids (main channel to the side channel). As a result, the particle separation distance (an indicator of DEP force) increases with the decrease in the conductivity ratio, which is both numerically predicted and experimentally verified. Numerical simulations also show that the separation distance increases with the increase in the magnitude of the electric field and the decrease in the width of the orifice. The method presented in this paper is simple and advantageous for increasing DEP force without applying higher DC voltages or fabricating smaller orifices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1an02196fDOI Listing

Publication Analysis

Top Keywords

particle separation
12
dep force
12
electric field
12
separation microfluidic
8
microfluidic chip
8
presented paper
8
increases decrease
8
decrease conductivity
8
conductivity ratio
8
separation distance
8

Similar Publications