Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Direct lineage conversion holds great promise in the regenerative medicine field for restoring damaged tissues using functionally engineered counterparts. However, current methods of direct lineage conversion, even those using virus-mediated transgenic expression of tumorigenic factors, are extremely inefficient (~25%). Thus, advanced methodologies capable of revolutionizing efficiency and addressing safety concerns are key to clinical translation of these technologies. Here, we propose an extracellular vesicle (EV)-guided, nonviral, direct lineage conversion strategy to enhance transdifferentiation of fibroblasts to induced cardiomyocyte-like cells (iCMs). The resulting iCMs have typical cardiac Ca transients and electrophysiological features and exhibit global gene expression profiles similar to those of cardiomyocytes. This is the first demonstration of the use of EVs derived from embryonic stem cells undergoing cardiac differentiation as biomimetic tools to induce cardiac reprogramming with extremely high efficiency (>60%), establishing a general, more readily accessible platform for generating a variety of specialized somatic cells through direct lineage conversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880777 | PMC |
http://dx.doi.org/10.1126/sciadv.abj6621 | DOI Listing |