A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Factory site analysis of respirable fibers generated during the process of cutting and grinding of carbon fibers-reinforced plastics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Carbon fibers are used in a variety of industrial applications, based on their lightweight and high stiffness properties. There is little information on the characteristics and exposure levels of debris generated during the factory processing of carbon fibers or their composites. This study revisits the general assumption that carbon fibers or their debris released during composite processing are considered safe for human health.

Methods: The present interventional study was conducted at a factory located in Japan, and involved on-site collection of debris generated during the industrial processing of polyacrylonitrile (PAN)-based carbon-fiber-reinforced plastic (CFRP). The debris were collected before being exhausted locally from around different factory machines and examined morphologically and quantitatively by scanning electron microscopy. The levels of exposure to respirable carbon fibers at different areas of the factory were also quantified.

Results: The collected debris mainly contained the original carbon fibers broken transversely at the fiber's major axis. However, carbon fiber fragments morphologically compatible with the WHO definition of respirable fibers (length: > 5 μm, width: < 3 μm, length/width ratio: > 3:1) were also found. The concentrations of respirable fibers at the six examined factory areas under standard working conditions in the same factory were below the standard limit of 10 fibers/L, specified for asbestos dust-generating facilities under the Air Pollution Control Law in Japan.

Conclusions: Our study identified potentially dangerous respirable fibers with high aspect ratio, which was generated during the processing of PAN-based CFRP. Regular risk assessment of carbon fiber debris is necessary to ensure work environment safety.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00420-022-01840-0DOI Listing

Publication Analysis

Top Keywords

carbon fibers
20
respirable fibers
16
fibers
9
carbon
8
debris generated
8
carbon fiber
8
factory
7
debris
6
respirable
5
factory site
4

Similar Publications