Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two major posttranscriptional mechanisms-alternative splicing (AS) and alternative polyadenylation (APA)-have attracted much attention in cancer research. Nevertheless, their roles in clear cell renal carcinoma (ccRCC) are still ill defined. Herein, this study was conducted to uncover the implications of AS and APA events in ccRCC progression. Through consensus molecular clustering analysis, two AS or APA RNA processing phenotypes were separately constructed with distinct prognosis, tumor-infiltrating immune cells, responses to immunotherapy, and chemotherapy. The AS or APA score was constructed to quantify AS or APA RNA processing patterns of individual ccRCCs with principal-component analysis. Both high AS and APA scores were characterized by undesirable survival outcomes, relatively high response to immunotherapy, and low sensitivity to targeted drugs, such as sorafenib and pazopanib. Moreover, several small molecular compounds were predicted for patients with a high AS or APA score. There was a positive correlation between AS and APA scores. Their interplay contributed to poor prognosis and reshaped the tumor immune microenvironment. Collectively, this study is the first to comprehensively analyze two major posttranscriptional events in ccRCC. Our findings uncovered the potential functions of AS and APA events and identified their therapeutic potential in immunotherapy and targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829526PMC
http://dx.doi.org/10.1016/j.omtn.2022.01.014DOI Listing

Publication Analysis

Top Keywords

splicing alternative
8
alternative polyadenylation
8
tumor immune
8
immune microenvironment
8
clear cell
8
cell renal
8
renal carcinoma
8
major posttranscriptional
8
apa
8
apa events
8

Similar Publications

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF

Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.

View Article and Find Full Text PDF

Background: Prostate cancer is one of the principal malignancies threatening human health, and the development of castration resistance often constitutes a major cause of treatment failure in its management.

Methods: To elucidate the potential association between programmed death-ligand 1 (PD-L1) and castration resistance in prostate cancer, we analyzed the expression levels of PD-L1 in both primary prostate cancer tissues and castration-resistant prostate cancer (CRPC) specimens as well as in corresponding cell lines by using western blots and immunohistochemistry. Then, we explored the specific mechanisms through transcriptomic sequencing technology.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF

Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.

View Article and Find Full Text PDF