Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Underwater images have different color casts due to different attenuation conditions, such as bluish, greenish, and yellowish. In addition, due to floating particles and special illumination, underwater images have problems such as the lack of detail and unnecessary noise. To handle the above problems, this paper proposes a new, to the best of our knowledge, three-step adaptive enhancement method. For the first step, adaptive color correction, the three channels are adjusted based on the intermediate color channel, which is calculated by considering the positional relationship of the histogram distribution. For the second step, denoise and restore details, we first transform the space to hue, saturation, value (HSV), a detailed restoration method based on the edge-preserving decomposition that restores the lost detail while removing the influence of some noise. For the third step, we improve the global contrast. Still in the HSV space, a simple linear stretch strategy is applied to the saturation channel. Experiments on the standard underwater image enhancement benchmark data set have proved that our method yields more natural colors and more valuable detailed information than several state-of-the-art methods. In addition, our method also improves the visibility of underwater images captured by low-light scenes and different hardware cameras.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.433558DOI Listing

Publication Analysis

Top Keywords

underwater images
12
adaptive color
8
color correction
8
underwater image
8
image enhancement
8
underwater
5
correction detail
4
detail restoration
4
restoration underwater
4
enhancement underwater
4

Similar Publications

Benchmarking AI-driven acoustic monitoring for floating marine debris: Challenges in deep learning-based debris extraction.

Mar Pollut Bull

September 2025

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan. Electronic address:

Existing studies have identified a substantial amount of invisible floating debris in low-visibility marine environments, in addition to debris on the surface and seabed. These suspended pollutants represent a persistent and dynamic threat to marine ecosystems and maritime safety. Although sonar technology facilitates debris monitoring in low-visibility waters, the automatic extraction of small and weakly contrasted debris targets remains a critical challenge.

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?", we propose an affirmative solution. We analyze the learned attention patterns for camouflaged objects and introduce a robust zero-shot COS framework.

View Article and Find Full Text PDF

Microplastics in coastal waters of Northern Cyprus: Environmental burden and seafood contamination.

Mar Pollut Bull

September 2025

Faculty of Fisheries, Mersin University, Yenisehir Campus, Mersin, 33160, Turkey; Mersin University, Marine Life Museum Yenisehir Campus, Mersin, 33160, Turkey.

In this study, surface water, sediment, and fish samples were collected from five regions along the northern coasts of Cyprus during both summer and winter seasons to assess their microplastic contamination levels. In surface waters, the highest microplastic concentrations per square meter were recorded in the following order: Karpaz (North) (0.16 MP/m), Güzelyurt (0.

View Article and Find Full Text PDF

The dwarf cuttlefish, (formerly ), is a coleoid cephalopod like octopus and squid, and an emerging model organism for scientific research. Dwarf cuttlefish can change the color, pattern, and texture of their skin in milliseconds to camouflage with their surroundings and communicate with conspecifics. Their skin displays are directly controlled by the brain.

View Article and Find Full Text PDF