A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. | LitMetric

Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides.

Mol Ther

Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan. Electronic address: tak-yoko

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microglial activation followed by recruitment of blood-borne macrophages into the central nervous system (CNS) aggravates neuroinflammation. Specifically, in multiple sclerosis (MS) as well as in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, activated microglia and macrophages (Mg/Mφ) promote proinflammatory responses and expand demyelination in the CNS. However, a potent therapeutic approach through the systemic route for regulating their functions has not yet been developed. Here, we demonstrate that a systemically injected DNA/RNA heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide (ASO) and its complementary RNA, conjugated to cholesterol (Chol-HDO) distributed more efficiently to demyelinating lesions of the spinal cord in EAE mice with significant gene silencing than the parent ASO. Importantly, systemic administration of Cd40-targeting Chol-HDO improved clinical signs of EAE with significant downregulation of Cd40 in Mg/Mφ. Furthermore, we successfully identify that macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of Chol-HDO by Mg/Mφ of EAE mice. Overall, our findings demonstrate the therapeutic potency of systemically administered Chol-HDO to regulate activated Mg/Mφ in neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171263PMC
http://dx.doi.org/10.1016/j.ymthe.2022.02.019DOI Listing

Publication Analysis

Top Keywords

activated microglia
8
microglia macrophages
8
systemically administered
8
dna/rna heteroduplex
8
eae mice
8
regulation activated
4
macrophages systemically
4
administered dna/rna
4
heteroduplex oligonucleotides
4
oligonucleotides microglial
4

Similar Publications