Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Wearable sensors, particularly accelerometers alone or combined with gyroscopes and magnetometers in an inertial measurement unit (IMU), are a logical alternative for gait analysis. While issues with intrusive and complex sensor placement limit practicality of multi-point IMU systems, single-point IMUs could potentially maximize patient compliance and allow inconspicuous monitoring in daily-living. Therefore, this review aimed to examine the validity of single-point IMUs for gait metrics analysis and identify studies employing them for clinical applications.
Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) were followed utilizing the following databases: PubMed; MEDLINE; EMBASE and Cochrane. Four databases were systematically searched to obtain relevant journal articles focusing on the measurement of gait metrics using single-point IMU sensors.
Results: A total of 90 articles were selected for inclusion. Critical analysis of studies was conducted, and data collected included: sensor type(s); sensor placement; study aim(s); study conclusion(s); gait metrics and methods; and clinical application. Validation research primarily focuses on lower trunk sensors in healthy cohorts. Clinical applications focus on diagnosis and severity assessment, rehabilitation and intervention efficacy and delineating pathological subjects from healthy controls.
Discussion: This review has demonstrated the validity of single-point IMUs for gait metrics analysis and their ability to assist in clinical scenarios. Further validation for continuous monitoring in daily living scenarios and performance in pathological cohorts is required before commercial and clinical uptake can be expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800203 | PMC |
http://dx.doi.org/10.21037/mhealth-21-17 | DOI Listing |