Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (μ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without μ-maps. For dedicated cardiac SPECT scanners with CZT detectors, indirect approaches are challenging due to the limited field-of-view (FOV). In this work, we aim to 1) first develop novel indirect approaches to improve the AC performance for dedicated SPECT; and 2) compare the AC performance between direct and indirect approaches for both general purpose and dedicated SPECT.
Methods: For dedicated SPECT, we developed strategies to predict truncated μ-maps from NAC images reconstructed with a small matrix, or full μ-maps from NAC images reconstructed with a large matrix using 270 anonymized clinical studies scanned on a GE Discovery NM/CT 570c SPECT/CT. For general purpose SPECT, we implemented direct and indirect approaches using 400 anonymized clinical studies scanned on a GE NM/CT 850c SPECT/CT. NAC images in both photopeak and scatter windows were input to predict μ-maps or AC images.
Results: For dedicated SPECT, the averaged normalized mean square error (NMSE) using our proposed strategies with full μ-maps was 1.20 ± 0.72% as compared to 2.21 ± 1.17% using the previous direct approaches. The polar map absolute percent error (APE) using our approaches was 3.24 ± 2.79% (R = 0.9499) as compared to 4.77 ± 3.96% (R = 0.9213) using direct approaches. For general purpose SPECT, the averaged NMSE of the predicted AC images using the direct approaches was 2.57 ± 1.06% as compared to 1.37 ± 1.16% using the indirect approaches.
Conclusions: We developed strategies of generating μ-maps for dedicated cardiac SPECT with small FOV. For both general purpose and dedicated SPECT, indirect approaches showed superior performance of AC than direct approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253078 | PMC |
http://dx.doi.org/10.1007/s00259-022-05718-8 | DOI Listing |