A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (μ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without μ-maps. For dedicated cardiac SPECT scanners with CZT detectors, indirect approaches are challenging due to the limited field-of-view (FOV). In this work, we aim to 1) first develop novel indirect approaches to improve the AC performance for dedicated SPECT; and 2) compare the AC performance between direct and indirect approaches for both general purpose and dedicated SPECT.

Methods: For dedicated SPECT, we developed strategies to predict truncated μ-maps from NAC images reconstructed with a small matrix, or full μ-maps from NAC images reconstructed with a large matrix using 270 anonymized clinical studies scanned on a GE Discovery NM/CT 570c SPECT/CT. For general purpose SPECT, we implemented direct and indirect approaches using 400 anonymized clinical studies scanned on a GE NM/CT 850c SPECT/CT. NAC images in both photopeak and scatter windows were input to predict μ-maps or AC images.

Results: For dedicated SPECT, the averaged normalized mean square error (NMSE) using our proposed strategies with full μ-maps was 1.20 ± 0.72% as compared to 2.21 ± 1.17% using the previous direct approaches. The polar map absolute percent error (APE) using our approaches was 3.24 ± 2.79% (R = 0.9499) as compared to 4.77 ± 3.96% (R = 0.9213) using direct approaches. For general purpose SPECT, the averaged NMSE of the predicted AC images using the direct approaches was 2.57 ± 1.06% as compared to 1.37 ± 1.16% using the indirect approaches.

Conclusions: We developed strategies of generating μ-maps for dedicated cardiac SPECT with small FOV. For both general purpose and dedicated SPECT, indirect approaches showed superior performance of AC than direct approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253078PMC
http://dx.doi.org/10.1007/s00259-022-05718-8DOI Listing

Publication Analysis

Top Keywords

direct approaches
24
indirect approaches
24
general purpose
20
nac images
16
dedicated spect
16
approaches
13
direct indirect
12
purpose dedicated
12
dedicated cardiac
12
cardiac spect
12

Similar Publications