Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Development of an independent MU calculator (StereoCalc) with and without heterogeneity corrections for stereotactic treatments, in a Varian TrueBeam STx LINAC using stereotactic cones, with flattening filter-free photon energies.
Methods: Multiple depth curves and output factors were measured, following the dosimetry formalism for small fields proposed by the TRS-483. The developed StereoCalc imports and processes the beam data files and calculates the patient plans with and without heterogeneity correction. Validation of the developed software was carried out using phantoms. The accuracy of the StereoCalc software was verified in stereotactic patient plans.
Results: A maximum difference of 2.47% and 2.07% was obtained in the phantom validation tests with and without heterogeneity correction, respectively. The mean percentual difference of StereoCalc from cone dose calculation (CDC) in the clinical testing was 2.86% ±1.27% and 0.78% ±0.48% with and without heterogeneity correction, respectively. The largest differences found were 7.34% and 1.98%, respectively.
Conclusions: The results obtained in this work show that the MU calculated with StereoCalc software is in good agreement with the values calculated by the treatment planning systems, both in static fields and arcs. We have also improved the software to consider heterogeneity corrections calculations. As expected, and as a major achievement of this work, some differences were observed when heterogeneities were considered. StereoCalc proved to be a powerful tool that can be integrated into the specific quality assurance program in a medical physics department for independent verification in stereotactic treatment with cones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992931 | PMC |
http://dx.doi.org/10.1002/acm2.13542 | DOI Listing |