98%
921
2 minutes
20
Alphaviruses are continuously re-emerging and pose a global threat to human health and currently no antiviral drug is commercially available for alphaviral infections. Alphavirus non-structural protein nsP4, which possesses RNA-dependent RNA polymerase (RdRp) activity, is a potential antiviral target. To date, no antiviral drug is commercially available against alphaviruses. Since RdRp is the key virus-specific enzyme involved in viral genome replication, this study identifies and validates the antiviral efficacy of small molecules targeting alphavirus RdRp. Purified nsP4 was characterized using the surface plasmon resonance (SPR) assay, and the binding affinities of divalent metal ions, ribonucleotides, and in vitro transcribed viral RNA oligonucleotides were obtained in the micromolar (μm) range. Further, four potential inhibitors, piperine (PIP), 2-thiouridine (2TU), pyrazinamide (PZA), and chlorogenic acid (CGA), were identified against nsP4 RdRp using a molecular docking approach. The SPR assay validated the binding of PIP, 2TU, PZA, and CGA to purified nsP4 RdRp with K of 0.08, 0.13, 0.66, and 9.87 µm, respectively. Initial testing of these molecules as alphavirus replication inhibitors was done using SINV-IRES-Luc virus. Detailed assessment of antiviral efficacy of molecules against CHIKV was performed by plaque reduction assay, qRT-PCR, and immunofluorescence assay. PIP, 2TU, PZA, and CGA showed antiviral potency against CHIKV with EC values of 6.68, 27.88, 36.26, and 53.62 µm, respectively. This study paves the way towards the development of novel broad-spectrum alphavirus antivirals targeting nsP4 RdRp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.16397 | DOI Listing |
Mol Biotechnol
July 2025
Dengue and Chikungunya Group, ICMR-National Institute of Virology, 20 A, Dr Ambedkar Road, Pune, Maharashtra, 411001, India.
Chikungunya virus (CHIKV) is an arthropod-borne virus that causes debilitating joint pain and fever with limited treatment options. Cinnamic acid, known for its broad-spectrum biological activities, and its derivatives were evaluated for their potential antiviral effects against CHIKV. In vitro experiments assessed the cytotoxicity of cinnamic acid and its derivatives and their efficacy in inhibiting CHIKV under different treatment settings.
View Article and Find Full Text PDFSci Rep
May 2025
Department of Biology, Central Michigan University, Mount Pleasant, MI, USA.
Central Michigan University (CMU) participated in a state-wide wastewater monitoring program starting in 2021. One rural site consistently produced higher concentrations of SARS-CoV-2 genome copies. Samples from this site were sequenced retrospectively and exclusively contained a derivative of Alpha variant lineage B.
View Article and Find Full Text PDFPLoS Pathog
October 2024
Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America.
Int J Mol Sci
June 2024
Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA.
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.
View Article and Find Full Text PDFbioRxiv
January 2024
Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA.
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function.
View Article and Find Full Text PDF