98%
921
2 minutes
20
New drug development for a disease is a tedious, time-consuming, complex, and expensive process. Even if it is done, the chances for success of newly developed drugs are still very low. Modern reports state that repurposing the pre-existing drugs will have more efficient functioning than newly developed drugs. This repurposing process will save time, reduce expenses and provide more success rate. The only limitation for this repurposing is getting a desired pharmacological and characteristic parameter of various drugs from vast data about medications, their effects, and target mechanisms. This drawback can be avoided by introducing computational methods of analysis. This includes various network analysis types that use various biological processes and relationships with various drugs to simplify data interpretation. Some of the data sets now available in standard, and simplified forms include gene expression, drug-target interactions, protein networks, electronic health records, clinical trial results, and drug adverse event reports. Integrating various data sets and interpretation methods allows a more efficient and easy way to repurpose an exact drug for the desired target and effect. In this review, we are going to discuss briefly various computational biological network analysis methods like gene regulatory networks, metabolic networks, protein-protein interaction networks, drug-target interaction networks, drugdisease association networks, drug-drug interaction networks, drug-side effects networks, integrated network-based methods, semantic link networks, and isoform-isoform networks. Along with this, we briefly discussed the drug's limitations, prediction methodologies, and data sets utilised in various biological networks for drug repurposing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2589977514666220214120403 | DOI Listing |
J Appl Stat
February 2025
Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan.
Adaptive cluster sampling is particularly helpful whenever the target population is unique, dispersed unevenly, concealed or difficult to find. In the current investigation, under an adaptive cluster sampling approach, we propose a ratio-product-logarithmic type estimator employing a single auxiliary variable for the estimation of finite population variance. The bias and mean square error of the proposed estimator are developed by using simulation as well as real data sets.
View Article and Find Full Text PDFJ Appl Stat
February 2025
Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA.
When analyzing real data sets, statisticians often face the question that the data are heterogeneous and it may not necessarily be possible to model this heterogeneity directly. One natural option in this case is to use the methods based on finite mixtures. The key question in these techniques often is what is the best number of mixtures or, depending on the focus of the analysis, the best number of sub-populations when the model is otherwise fixed.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDFInt J Nurs Stud
August 2025
Florence Nightingale Faculty of Nursing Midwifery and Palliative Care, Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, Bessemer Road, London SE5 9PJ, UK; Sussex Community NHS Foundation Trust, Brighton General Hospital, Elm Grove, Brighton, East Sussex
Background: People with advanced illness at home, and their families, rely on 'out-of-hours' services provided by community, primary and specialist palliative care services. Home is commonly expressed as the preferred place to be cared for and die, and an increasing proportion of people are dying at home, but what constitutes 'good' care is poorly understood from the combined perspectives of healthcare professionals and patients and family caregivers.
Objective: To understand the convergence and divergence of the perspectives of healthcare professionals with those of patients and family caregivers, on priorities for home-based palliative care in the 'out-of-hours' period in the UK.
Inorg Chem
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.
View Article and Find Full Text PDF