Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The novel chemical strategy for sustainability calls for a Sustainable and Safe-by-Design (SSbD) holistic approach to achieve protection of public health and the environment, industrial relevance, societal empowerment, and regulatory preparedness. Based on it, the ASINA project expands a data-driven Management Methodology (ASINA-SMM) capturing quality, safety, and sustainability criteria across the Nano-Enabled Products' (NEPs) life cycle. We base the development of this methodology through value chains of highly representative classes of NEPs in the market, namely, (i) self-cleaning/air-purifying/antimicrobial coatings and (ii) nano-structured capsules delivering active phases in cosmetics. These NEPs improve environmental quality and human health/wellness and have innovative competence to industrial sectors such as healthcare, textiles, cosmetics, and medical devices. The purpose of this article is to visually exhibit and explain the ASINA approach, which allows identifying, combining, and addressing the following pillars: environmental impact, techno-economic performance, functionality, and human and environmental safety when developing novel NEPs, at an early stage. A metamodel supports the above by utilizing quality data collected throughout the NEPs' life cycle, for maximization of functionality (to meet stakeholders needs) and nano-safety (regulatory obligations) and for the minimization of costs (to meet business requirements) and environmental impacts (to achieve sustainability). Furthermore, ASINA explores digitalization opportunities (digital twins) to speed the nano-industry translation into automatic progress towards economic, social, environmental, and governance sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832976PMC
http://dx.doi.org/10.3389/fbioe.2021.805096DOI Listing

Publication Analysis

Top Keywords

asina project
8
sustainable safe-by-design
8
life cycle
8
environmental
5
asina
4
project methodological
4
methodological data-driven
4
data-driven sustainable
4
safe-by-design approach
4
approach development
4

Similar Publications

The fruits of data shepherding: A collection of open FAIR datasets for titanium dioxide coated photocatalytic surfaces.

NanoImpact

August 2025

CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy. Electronic address:

This paper presents a large-scale collaborative effort within a multi-partner consortium, to systematically structure, curate, and openly share data in alignment with the FAIR principles. The data result from a case study of titanium dioxide (TiO₂) nanomaterials (NMs) for photocatalytic depolluting surfaces, produced via various spray coating techniques under the Safe and Sustainable by Design (SSbD) approach. The data are publicly available through a dedicated Zenodo community (https://zenodo.

View Article and Find Full Text PDF

Research Question: Does a short co-incubation of gametes in conventional IVF affect post-insemination outcomes and embryo morphokinetics?

Design: Sibling oocyte randomized pilot study conducted between December 2020 and March 2023. Eligible couples (n = 55) were women aged 18-43 years with BMI 35 km/m or lower and male normal semen parameters. Cumulus oocyte complexes (COC) (six to 12) were randomized in a 1:1:2 proportion in long (16-18 h) or short (2 h) co-incubation IVF exposure and ICSI, respectively.

View Article and Find Full Text PDF

Advancing titanium dioxide coated photocatalytic depolluting surfaces: Leveraging ASINA's roadmap for safer and sustainable solutions.

Comput Struct Biotechnol J

December 2024

CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, Faenza, RA 48018, Italy.

This report, the second of its kind from ASINA project, aims at providing a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) solutions for titanium dioxide (TiO) nanomaterials (NMs). We begin with a brief description of ASINA's methodology across the product lifecycle, highlighting the quantitative elements, such as the Key Performance Indicators (KPIs). We then propose a decision support tool for implementing SSbD objectives across various dimensions-functionality, cost, environment, and human health safety.

View Article and Find Full Text PDF

This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context.

View Article and Find Full Text PDF

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk.

View Article and Find Full Text PDF