Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Supergenes are regions of suppressed recombination that may span hundreds of genes and can control variation in key ecological phenotypes. Since genetic analysis is made impossible by the absence of recombination between genes, it has been difficult to establish how individual genes within these regions contribute to supergene-controlled phenotypes. The white-throated sparrow is a classic example in which a supergene controls behavioral differences as well as distinct coloration that determines mate choice. A landmark study now demonstrates that differences between supergene variants in the promoter sequences of a hormone receptor gene change its expression and control changes in behavior. To unambiguously establish the link between genotype and phenotype, the authors used antisense oligonucleotides to alter the level of gene expression in a focal brain region targeted through a cannula. The study showcases a powerful approach to the functional genomic manipulation of a wild vertebrate species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803343 | PMC |
http://dx.doi.org/10.12703/r-01-000003 | DOI Listing |