A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A radiologic diagnostic scoring model based on CT features for differentiating gastric schwannoma from gastric gastrointestinal stromal tumors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We aimed to further explore the CT features of gastric schwannoma (GS), propose and validate a convenient diagnostic scoring system to distinguish GS from gastric gastrointestinal stromal tumors (GISTs) preoperatively. 170 patients with submucosal tumors pathologically confirmed (GS n=35; gastric GISTs n=135) from Hospital 1 were analyzed retrospectively as the training cohort, and 72 patients (GS=11; gastric GISTs=61) from Hospital 2 were enrolled as the validation cohort. We searched for significant CT imaging characteristics and constructed the scoring system via binary logistic regression and converted regression coefficients to weighted scores. The ROC curves, AUCs and calibration tests were carried out to evaluate the scoring models in both the training cohort and the validation cohort. For convenient assessment, the system was further divided into four score ranges and their diagnostic probability of GS was calculated respectively. Four CT imaging characteristics were ultimately enrolled in this scoring system, including transverse position (2 points), location (5 points), perilesional lymph nodes (6 points) and pattern of enhancement (2 points). The AUC of the scoring model in the training cohort were 0.873 (95% CI, 0.816-0.929) and the cutoff point was 6 points. In the validation cohort, the AUC was 0.898 (95% CI, 0.804-0.957) and the cutoff value was 5 points. Four score ranges were as follows: 0-3 points for very low probability of GS, 4-7 points for low probability; 8-9 points for middle probability; 10-15 points for very high probability. A convenient scoring model to preoperatively discriminate GS from gastric GISTs was finally proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822295PMC

Publication Analysis

Top Keywords

scoring model
12
scoring system
12
training cohort
12
validation cohort
12
points
10
diagnostic scoring
8
gastric schwannoma
8
gastric gastrointestinal
8
gastrointestinal stromal
8
stromal tumors
8

Similar Publications