Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Critical-sized midfacial bone defects present a unique clinical challenge due to their complex three-dimensional shapes and intimate associations with sensory organs. To address this challenge, a point-of-care treatment strategy for functional, long-term regeneration of 2 cm full-thickness segmental defects in the zygomatic arches of Yucatan minipigs is evaluated. A digital workflow is used to 3D-print anatomically precise, porous, biodegradable scaffolds from clinical-grade poly-ε-caprolactone and decellularized bone composites. The autologous stromal vascular fraction of cells (SVF) is isolated from adipose tissue extracts and infused into the scaffolds that are implanted into the zygomatic ostectomies. Bone regeneration is assessed up to 52 weeks post-operatively in acellular (AC) and SVF groups (BV/DV = 0.64 ± 0.10 and 0.65 ± 0.10 respectively). In both treated groups, bone grows from the adjacent tissues and restores the native anatomy. Significantly higher torque is required to fracture the bone-scaffold interface in the SVF (7.11 ± 2.31 N m) compared to AC groups (2.83 ± 0.23 N m). Three-dimensional microcomputed tomography analysis reveals two distinct regenerative patterns: osteoconduction along the periphery of scaffolds to form dense lamellar bone and small islands of woven bone deposits growing along the struts in the scaffold interior. Overall, this study validates the efficacy of using 3D-printed bioactive scaffolds with autologous SVF to restore geometrically complex midfacial bone defects of clinically relevant sizes while also highlighting remaining challenges to be addressed prior to clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121392DOI Listing

Publication Analysis

Top Keywords

bone defects
12
point-of-care treatment
8
geometrically complex
8
complex midfacial
8
bone
8
scaffolds autologous
8
autologous stromal
8
stromal vascular
8
vascular fraction
8
midfacial bone
8

Similar Publications

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Background: Dental rehabilitation is considered challenging to achieve whenever composite scapulo-dorsal free flaps are used to reconstruct medium-to-large maxillary defects due to the fact that bone quality and quantity may be low, which may preclude placement of conventional dental implants. In such cases, current options for dental rehabilitation include printed patient-specific subperiosteal implants or zygomatic implants.

Methods: The authors report three cases of maxillary tumour resections that led to medium-to-large defects reconstructed using composite scapulo-dorsal free flaps.

View Article and Find Full Text PDF

Reconstructing multi-tissue defects in the finger remains a significant challenge in hand surgery. We present the case of a 37-year-old man with segmental loss of bone, skin and extensor apparatus on the dorsal aspect of the index finger. A single stage reconstruction was successfully performed using a pedicled chimeric flap based on the second dorsal metacarpal artery combining skin paddle, second metacarpal base bone and the extensor indicis proprius.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS), particularly in older adults aged 60 years and above, present significant therapeutic challenges due to poor prognosis and limited treatment options. Higher-risk MDS (HR-MDS), defined by the Revised International Prognostic Scoring System score of ⩾3.5, is characterized by increased myeloblasts, severe cytopenia, and a median survival of <2 years.

View Article and Find Full Text PDF

Background: Acetabular reconstruction is often challenging in revision hip arthroplasty, especially in the face of moderate to severe acetabular bone deficiency. In some severe bone defects, double-metal tantalum cups can improve the contact area between bone and implants, increase the surface area for bone ingrowth, and better restore the anatomical position of the acetabulum. Furthermore, with a good press-fit, the auxiliary screw has a minimal effect on acetabular cup stability.

View Article and Find Full Text PDF