Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Narrowing the communication and knowledge gap between producers and users of scientific data is a longstanding problem in ecological conservation and land management. Decision support tools (DSTs), including websites or interactive web applications, provide platforms that can help bridge this gap. DSTs can most effectively disseminate and translate research results when producers and users collaboratively and iteratively design content and features. One data resource seldom incorporated into DSTs are species distribution models (SDMs), which can produce spatial predictions of habitat suitability. Outputs from SDMs can inform management decisions, but their complexity and inaccessibility can limit their use by resource managers or policy makers. To overcome these limitations, we present the Invasive Species Habitat Tool (INHABIT), a novel, web-based DST built with R Shiny to display spatial predictions and tabular summaries of habitat suitability from SDMs for invasive plants across the contiguous United States. INHABIT provides actionable science to support the prevention and management of invasive species. Two case studies demonstrate the important role of end user feedback in confirming INHABIT's credibility, utility, and relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824347PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263056PLOS

Publication Analysis

Top Keywords

decision support
8
species habitat
8
contiguous united
8
united states
8
producers users
8
spatial predictions
8
habitat suitability
8
invasive species
8
inhabit web-based
4
web-based decision
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Background: The increasing amount of data routinely collected on ICUs poses a challenge for clinicians which is aggravated with data-heavy therapies like Continuous Kidney Replacement Therapy (CKRT). We developed the CKRT Supporting Software Prototype (CKRT-SSP), a clinical decision support system for use before, during and after CKRT. The aim of this user experience (UX) study was to prospectively evaluate CKRT-SSP in terms of usability, user experience, and workload in a simulated ICU setting.

View Article and Find Full Text PDF

Objective: This study aimed to identify key predictors of uterine fibroid (UF) recurrence following laparoscopic myomectomy (LM) in reproductive-age women and to construct a predictive nomogram to support individualized clinical decision-making.

Methods: This retrospective cohort study included 459 women who underwent LM. Recurrence of UFs and risk of recurrence were analyzed.

View Article and Find Full Text PDF

To evaluate a simplified version of the Clinical Frailty Scale (SCFS) among older adults presenting to the emergency department (ED) with acute dyspnea. In this retrospective single-center cohort study, we included patients from the Acute Dyspnea Study (ADYS) cohort. Severity of illness was assessed using the Medical Emergency Triage and Treatment System (METTS).

View Article and Find Full Text PDF

Generative AI in perioperative medicine and anesthesiology: ethical integration, educational innovation, and the future of clinical professionalism.

J Anesth

September 2025

Community Medicine Education Promotion Office, Faculty of Medicine, Kagawa University Ikenobe, 1750-1, Miki-Cho, Kagawa, 761-0793, Japan.

Generative artificial intelligence (AI) is rapidly transforming perioperative medicine, particularly anesthesiology, by enabling novel applications, such as real-time data synthesis, individualized risk prediction, and automated documentation. These capabilities enhance clinical decision-making, patient communication, and workflow efficiency in the operating room. In education, generative AI offers immersive simulations and tailored learning experiences that improve both technical skills and professional judgment.

View Article and Find Full Text PDF