Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding the specifics of interaction between the protein and nanomaterial is crucial for designing efficient, safe, and selective nanoplatforms, such as biosensor or nanocarrier systems. Routing experimental screening for the most suitable complementary pair of biomolecule and nanomaterial used in such nanoplatforms might be a resource-intensive task. While a range of computational tools are available for prescreening libraries of proteins for their interactions with small molecular ligands, choices for high-throughput screening of protein libraries for binding affinities to new and existing nanomaterials are very limited. In the current work, we present the results of the systematic computational study of interaction of various biomolecules with pristine zero-valent noble metal nanoparticles, namely, AgNPs, by using the multiscale approach. A set of blood plasma and dietary proteins for which the interaction with AgNPs was described experimentally were examined computationally to evaluate the performance of the method. A set of interfacial descriptors (log , adsorption affinities, and adsorption affinity ranking), which can characterize the relative hydrophobicity/hydrophilicity/lipophilicity of the nanosized silver and its ability to form bio(eco)corona, was evaluated for future use in nano-QSAR/QSPR studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859825 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.1c09525 | DOI Listing |