Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nerve conduction studies (NCS) are an essential aspect of the assessment of patients with peripheral neuropathies. However, conventional NCS do not reflect activation of small afferent fibers, including Aδ and C fibers. A definitive gold standard for laboratory evaluation of these fibers is still needed and therefore, clinical evaluation remains fundamental in patients with small fiber neuropathies (SFN). Several clinical and research techniques have been developed for the assessment of small fiber function, such as (i) microneurography, (ii) laser evoked potentials, (iii) contact heat evoked potentials, (iv) pain-related electrically evoked potentials, (v) quantitative thermal sensory testing, (vi) skin biopsy-intraepidermal nerve fiber density and (vii) corneal confocal microscopy. The first five are physiological techniques, while the last two are morphological. They all have advantages and limitations, but the combined use of an appropriate selection of each of them would lead to gathering invaluable information for the diagnosis of SFN. In this review, we present an update on techniques available for the study of small afferent fibers and their clinical applicability. A summary of the anatomy and important physiological aspects of these pathways, and the clinical manifestations of their dysfunction is also included, in order to have a minimal common background.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2022.01.002DOI Listing

Publication Analysis

Top Keywords

small fiber
12
evoked potentials
12
fiber neuropathies
8
small afferent
8
afferent fibers
8
small
5
review techniques
4
techniques assessment
4
assessment sensory
4
sensory small
4

Similar Publications

A 22-year-old woman had an 8-year history of progressive bilateral vision loss and of diabetes mellitus. Her mother had diabetes and two first cousins had severe congenital deafness. On examination, her visual acuities were 6/36 bilaterally, with absent colour vision and gross optic disc pallor.

View Article and Find Full Text PDF

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Determination of alcohol concentration in a single drop blood obtained via fingertip using gas chromatography/mass spectrometry coupled with solid-phase microextraction.

Leg Med (Tokyo)

September 2025

Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF