A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ResNet-BiLSTM: A Multiscale Deep Learning Model for Heartbeat Detection Using Ballistocardiogram Signals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the heartbeat detection from ballistocardiogram (BCG) signals using force sensors is interfered by respiratory effort and artifact motion, advanced signal processing algorithms are required to detect the J-peak of each BCG signal so that beat-to-beat interval can be identified. However, existing methods generally rely on rule-based detection of a fixed size, without considering the rhythm features in a large time scale covering multiple BCG signals. . This paper develops a deep learning framework based on ResNet and bidirectional long short-term memory (BiLSTM) to conduct beat-to-beat detection of BCG signals. Unlike the existing methods, the proposed network takes multiscale features of BCG signals as the input and, thus, can enjoy the complementary advantages of both morphological features of one BCG signal and rhythm features of multiple BCG signals. Different time scales of multiscale features for the proposed model are validated and analyzed through experiments. The BCG signals recorded from 21 healthy subjects are conducted to verify the performance of the proposed heartbeat detection scheme using leave-one-out cross-validation. The impact of different time scales on the detection performance and the performance of the proposed model for different sleep postures are examined. Numerical results demonstrate that the proposed multiscale model performs robust to sleep postures and achieves an averaged absolute error ( ) and an averaged relative error ( ) of the heartbeat interval relative to the R-R interval of 9.92 ms and 2.67 ms, respectively, which are superior to those of the state-of-the-art detection protocol. In this work, a multiscale deep-learning model for heartbeat detection using BCG signals is designed. We demonstrate through the experiment that the detection with multiscale features of BCG signals can provide a superior performance to the existing works. Further study will examine the ultimate performance of the multiscale model in practical scenarios, i.e., detection for patients suffering from cardiovascular disorders with night-sleep monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813264PMC
http://dx.doi.org/10.1155/2022/6388445DOI Listing

Publication Analysis

Top Keywords

bcg signals
32
heartbeat detection
16
multiscale features
12
features bcg
12
detection
10
bcg
10
signals
9
deep learning
8
model heartbeat
8
detection ballistocardiogram
8

Similar Publications