Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer.

Annu Rev Biomed Eng

University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; email:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical propertiesfor mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177572PMC
http://dx.doi.org/10.1146/annurev-bioeng-110220-115419DOI Listing

Publication Analysis

Top Keywords

tumor cells
8
regulation tumor
4
tumor invasion
4
physical
4
invasion physical
4
physical microenvironment
4
microenvironment lessons
4
lessons breast
4
breast brain
4
brain cancer
4

Similar Publications

Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.

View Article and Find Full Text PDF

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Unlabelled: Autoimmune haemolytic anaemia (AIHA) is caused by antibody-mediated destruction of red blood cells. There are two broad categories of AIHA: warm and cold, both categorized by the thermal reactivity of the autoantibodies. Cold agglutinin disease (CAD) occurs at temperatures below normal body temperature and primarily involves IgM antibodies.

View Article and Find Full Text PDF

Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF