A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Vehicular traffic noise modelling of urban area-a contouring and artificial neural network based approach. | LitMetric

Vehicular traffic noise modelling of urban area-a contouring and artificial neural network based approach.

Environ Sci Pollut Res Int

School of Basic Sciences and Research, Department of Environmental Sciences, Sharda University, Greater Noida, India.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Road traffic vehicular noise is one of the main sources of environmental pollution in urban areas of India. Also, steadily increasing urbanization, industrialization, infrastructures around city condition causes health risks among the urban populations. In this study, we have explored noise descriptors (L, L, L, LNI, TNI, NC), contour plotting and find the suitability of artificial neural networks (ANN) for the prediction of traffic noise all around the Dhanbad township in 15 monitoring stations. In order to develop the prediction model, measuring noise levels of five different hours, speed of vehicles, and traffic volume in every monitoring point have been studied and analyzed. Traffic volume, percent of heavy vehicles, speed, traffic flow, road gradient, pavement, road side carriageway distance factors were taken as input parameter, whereas L as output parameter for formation of neural network architecture. As traffic flow is heterogenous which mainly contains 59%, two wheelers and different vehicle specifications with varying speeds also affect driving and honking behavior which constantly changing noise characteristics. From radial noise diagrams shown that average noise levels of all the stations beyond permissible limit and the highest noise levels were found at the speed of 50-55 km/h in both peak and non-peak hours. Noise descriptors clearly indicate high annoyance level in the study area. Artificial neural network with 7-7-5 formation has been developed and found as optimum due to its sum of square and overall relative error 0.858 and .029 in training and 0.458 and 0.862 in testing phase respectively. Comparative analysis between observed and predicted noise level shows very less deviation up to ± 0.6 dB(A) and the R linear values are more than 0.9 in all five noise hours indicating the accuracy of model. Also, it can be concluded that ANN approach is much superior in prediction of traffic noise level to any other statistical method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17577-1DOI Listing

Publication Analysis

Top Keywords

noise
13
traffic noise
12
artificial neural
12
neural network
12
noise levels
12
noise descriptors
8
prediction traffic
8
traffic volume
8
traffic flow
8
noise level
8

Similar Publications