Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coastal vegetated habitats such as seagrasses are known to play a critical role in carbon cycling and the potential to mitigate climate change, as blue carbon habitats have been repeatedly highlighted. However, little information is known about the role of associated macrofauna communities on the dynamics of critical processes of seagrass carbon metabolism (e.g., respiration, turnover, and production). We conducted a field study across a spatial gradient of seagrass meadows involving variable environmental conditions and macrobenthic diversity to investigate (1) the relationship between macrofauna biodiversity and secondary production (i.e., consumer incorporation of organic matter per time unit), and (2) the role of macrofauna communities in seagrass organic carbon metabolism (i.e., respiration and primary production). We show that, although several environmental factors influence secondary production, macrofauna biodiversity controls the range of local seagrass secondary production. We demonstrate that macrofauna respiration rates were responsible for almost 40% of the overall seafloor community respiration. Macrofauna represented on average >25% of the total benthic organic C stocks, high secondary production that is likely to become available to upper trophic levels of the coastal food web. Our findings support the role of macrofauna biodiversity in maintaining productive ecosystems, implying that biodiversity loss due to ongoing environmental change yields less productive seagrass ecosystems. Therefore, the assessment of carbon dynamics in coastal habitats should include associated macrofauna biodiversity elements if we aim to obtain robust estimates of global carbon budgets required to implement management actions for the sustainable functioning of the world's coasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287067PMC
http://dx.doi.org/10.1002/ecy.3648DOI Listing

Publication Analysis

Top Keywords

secondary production
20
macrofauna biodiversity
16
carbon metabolism
12
biodiversity secondary
8
seagrass carbon
8
macrofauna
8
associated macrofauna
8
macrofauna communities
8
metabolism respiration
8
role macrofauna
8

Similar Publications

Introduction: Pharmacokinetic differences between long-acting injectable antipsychotic (LAI) formulations, combined with a lack of clinical switch studies, contribute to clinician uncertainty when transitioning between LAIs. This analysis employed a population pharmacokinetic (popPK) modeling approach to characterize dosing conversions and switching strategies from intramuscular paliperidone palmitate once monthly (PP1m) to TV-46000, a long-acting subcutaneous formulation of risperidone, once monthly (q1m), with a secondary analysis of PP1m to TV-46000 every 2 months (q2m).

Methods: For PP1m and TV-46000, concentration-time profiles for paliperidone and TV-46000 total active moiety (TAM; risperidone + paliperidone) were simulated on the basis of published popPK models with virtual populations of 5000 patients.

View Article and Find Full Text PDF

This study examined the effects of 24R,25-dihydroxyvitamin D (24R,25(OH)D) in estrogen-responsive laryngeal cancer tumorigenesis in vivo, the mechanisms involved, and whether the ability of the tumor cells to produce 24R,25(OH)D locally is estrogen-dependent. Estrogen receptor alpha-66 positive (ER+) UM-SCC-12 cells and ER- UM-SCC-11A cells responded differently to 24R,25(OH)D in vivo; 24R,25(OH)D enhanced tumorigenesis in ER+ tumors but inhibited tumorigenesis in ER- tumors. Treatment with 17β-estradiol (E) for 24 h reduced levels of CYP24A1 protein but increased 24R,25(OH)D production in ER+ cells; treatment with E for 9 min reduced CYP24A1 at 24 h and reduced 24R,25(OH)D production in ER- cells.

View Article and Find Full Text PDF

Translational coupling of neighboring genes in prokaryotes.

J Bacteriol

September 2025

Wadsworth Center, New York State Department of Health, Albany, New York, USA.

Prokaryotic genomes are gene-dense, so genes in the same orientation are often separated by short intergenic sequences or even overlap. Many mechanisms of regulation depend on open reading frames (ORFs) being spatially close to one another. Here, we describe one such mechanism, translational coupling, where translation of one gene promotes translation of a co-oriented neighboring gene.

View Article and Find Full Text PDF

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF