Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We developed a method using cardiovascular magnetic resonance imaging to model the untwisting of the left ventricle (LV) as a damped torsional harmonic oscillator to estimate shear modulus (intrinsic myocardial stiffness) and frictional damping, then applied this method to evaluate the torsional stiffness of patients with resistant hypertension (RHTN) compared to a control group.The angular displacement of the LV during diastole was measured. Myocardial shear modulus and damping constant were determined by solving a system of equations modeling the diastolic untwisting as a damped, unforced harmonic oscillator, in 100 subjects with RHTN and 36 control subjects.Though overall torsional stiffness was increased in RHTN (41.7 (27.1-60.7) versus 29.6 (17.3-35.7) kdyn*cm; = 0.001), myocardial shear modulus was not different between RHTN and control subjects (0.34 (0.23-0.50) versus 0.33 (0.22-0.46) kPa;= 0.758). RHTN demonstrated an increase in overall diastolic frictional damping (6.13 ± 3.77 versus 3.35 ± 1.70 kdyn*cm*s;< 0.001), but no difference in damping when corrected for the overlap factor (74.3 ± 25.9 versus 68.0 ± 24.0 dyn*s/cm; = 0.201). There was an increase in the polar moment (geometric component of stiffness; 11.47 ± 6.95 versus 7.58 ± 3.28 cm;<0.001).We have developed a phenomenological method, estimating the intrinsic stiffness and relaxation properties of the LV based on restorative diastolic untwisting. This model finds increased overall stiffness in RHTN and points to hypertrophy, rather than tissue- level changes, as the major factor leading to increased stiffness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066283 | PMC |
http://dx.doi.org/10.1088/1361-6579/ac4e6e | DOI Listing |